Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709680

RESUMO

Brassinosteroids (BR) and gibberellins (GA) regulate plant height and leaf angle in maize (Zea mays). Mutants with defects in BR or GA biosynthesis or signaling identify components of these pathways and enhance our knowledge about plant growth and development. In this study, we characterized three recessive mutant alleles of GRAS transcription factor 42 (gras42) in maize, a GRAS transcription factor gene orthologous to the DWARF AND LOW TILLERING (DLT) gene of rice (Oryza sativa). These maize mutants exhibited semi-dwarf stature, shorter and wider leaves, and more upright leaf angle. Transcriptome analysis revealed a role for GRAS42 as a determinant of BR signaling. Analysis of the expression consequences from loss of GRAS42 in the gras42-mu1021149 mutant indicated a weak loss of BR signaling in the mutant, consistent with its previously demonstrated role in BR signaling in rice. Loss of BR signaling was also evident by the enhancement of weak BR biosynthetic mutant alleles in double mutants of nana plant1-1 and gras42-mu1021149. The gras42-mu1021149 mutant had little effect on GA-regulated gene expression, suggesting that GRAS42 is not a regulator of core GA signaling genes in maize. Single cell expression data identified gras42 expressed among cells in the G2/M phase of the cell cycle consistent with its previously demonstrated role in cell cycle gene expression in Arabidopsis (Arabidopsis thaliana). Cis-acting natural variation controlling GRAS42 transcript accumulation was identified by expression genome-wide association study (eGWAS) in maize. Our results demonstrate a conserved role for GRAS42/SCARECROW-LIKE 28 (SCL28)/DLT in BR signaling, clarify the role of this gene in GA signaling, and suggest mechanisms of tillering and leaf angle control by BR.

2.
Front Plant Sci ; 14: 1253640, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780496

RESUMO

Allotopic expression is the term given for the deliberate relocation of gene function from an organellar genome to the nuclear genome. We hypothesized that the allotopic expression of an essential mitochondrial gene using a promoter that expressed efficiently in all cell types except those responsible for male reproduction would yield a cytoplasmic male sterility (CMS) phenotype once the endogenous mitochondrial gene was inactivated via genome editing. To test this, we repurposed the mitochondrially encoded atp1 gene of tobacco to function in the nucleus under the transcriptional control of a CaMV 35S promoter (construct 35S:nATP1), a promoter that has been shown to be minimally expressed in early stages of anther development. The endogenous atp1 gene was eliminated (Δatp1) from 35S:nATP1 tobacco plants using custom-designed meganucleases directed to the mitochondria. Vegetative growth of most 35S:nATP1/Δatp1 plants appeared normal, but upon flowering produced malformed anthers that failed to shed pollen. When 35S:nATP1/Δatp1 plants were cross-pollinated, ovary/capsule development appeared normal, but the vast majority of the resultant seeds were small, largely hollow and failed to germinate, a phenotype akin to the seedless trait known as stenospermocarpy. Characterization of the mitochondrial genomes from three independent Δatp1 events suggested that spontaneous recombination over regions of microhomology and substoichiometric shifting were the mechanisms responsible for atp1 elimination and genome rearrangement in response to exposure to the atp1-targeting meganucleases. Should the results reported here in tobacco prove to be translatable to other crop species, then multiple applications of allotopic expression of an essential mitochondrial gene followed by its elimination through genome editing can be envisaged. Depending on the promoter(s) used to drive the allotopic gene, this technology may have potential application in the areas of: (1) CMS trait development for use in hybrid seed production; (2) seedless fruit production; and (3) transgene containment.

3.
Plant Physiol ; 191(2): 1084-1101, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36508348

RESUMO

Grass inflorescences support floral structures that each bear a single grain, where variation in branch architecture directly impacts yield. The maize (Zea mays) RAMOSA1 (ZmRA1) transcription factor acts as a key regulator of inflorescence development by imposing branch meristem determinacy. Here, we show RA1 transcripts accumulate in boundary domains adjacent to spikelet meristems in sorghum (Sorghum bicolor, Sb) and green millet (Setaria viridis, Sv) inflorescences similar as in the developing maize tassel and ear. To evaluate the functional conservation of syntenic RA1 orthologs and promoter cis sequences in maize, sorghum, and setaria, we utilized interspecies gene transfer and assayed genetic complementation in a common inbred background by quantifying recovery of normal branching in highly ramified ra1-R mutants. A ZmRA1 transgene that includes endogenous upstream and downstream flanking sequences recovered normal tassel and ear branching in ra1-R. Interspecies expression of two transgene variants of the SbRA1 locus, modeled as the entire endogenous tandem duplication or just the nonframeshifted downstream copy, complemented ra1-R branching defects and induced unusual fasciation and branch patterns. The SvRA1 locus lacks conserved, upstream noncoding cis sequences found in maize and sorghum; interspecies expression of a SvRA1 transgene did not or only partially recovered normal inflorescence forms. Driving expression of the SvRA1 coding region by the ZmRA1 upstream region, however, recovered normal inflorescence morphology in ra1-R. These data leveraging interspecies gene transfer suggest that cis-encoded temporal regulation of RA1 expression is a key factor in modulating branch meristem determinacy that ultimately impacts grass inflorescence architecture.


Assuntos
Sorghum , Zea mays , Zea mays/metabolismo , Inflorescência/genética , Inflorescência/metabolismo , Proteínas de Plantas/metabolismo , Poaceae/genética , Fatores de Transcrição/metabolismo , Sorghum/genética , Sorghum/metabolismo , Meristema/metabolismo
4.
Plant Physiol ; 188(2): 782-794, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34791481

RESUMO

The plant shoot apex houses the shoot apical meristem, a highly organized and active stem-cell tissue where molecular signaling in discrete cells determines when and where leaves are initiated. We optimized a spatial transcriptomics approach, in situ sequencing (ISS), to colocalize the transcripts of 90 genes simultaneously on the same section of tissue from the maize (Zea mays) shoot apex. The RNA ISS technology reported expression profiles that were highly comparable with those obtained by in situ hybridizations (ISHs) and allowed the discrimination between tissue domains. Furthermore, the application of spatial transcriptomics to the shoot apex, which inherently comprised phytomers that are in gradual developmental stages, provided a spatiotemporal sequence of transcriptional events. We illustrate the power of the technology through PLASTOCHRON1 (PLA1), which was specifically expressed at the boundary between indeterminate and determinate cells and partially overlapped with ROUGH SHEATH1 and OUTER CELL LAYER4 transcripts. Also, in the inflorescence, PLA1 transcripts localized in cells subtending the lateral primordia or bordering the newly established meristematic region, suggesting a more general role of PLA1 in signaling between indeterminate and determinate cells during the formation of lateral organs. Spatial transcriptomics builds on RNA ISH, which assays relatively few transcripts at a time and provides a powerful complement to single-cell transcriptomics that inherently removes cells from their native spatial context. Further improvements in resolution and sensitivity will greatly advance research in plant developmental biology.


Assuntos
Células Vegetais , Proteínas de Plantas/química , Análise de Sequência de RNA/métodos , Zea mays/química , Expressão Gênica , Proteínas de Plantas/genética , Análise de Sequência de RNA/instrumentação , Zea mays/genética
5.
Curr Opin Plant Biol ; 64: 102124, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34715472

RESUMO

People living in the Balsas River basin in southwest México domesticated maize from the bushy grass teosinte. Nine thousand years later, in 2021, Ms. Deb Haaland - a member of the Pueblo of Laguna tribe of New Mexico - wore a dress adorned with a cornstalk when she was sworn in as the Secretary of Interior of the United States of America. This choice of garment highlights the importance of the coevolution of maize and the farmers who, through careful selection over thousands of years, domesticated maize and adapted the physiology and shoot architecture of maize to fit local environments and growth habits. Some traits such as tillering were directly selected on (arches), and others such as tassel size are the by-products (spandrels) of maize evolution. Here, we review current knowledge of the underlying cellular, developmental, physiological, and metabolic processes that were selected by farmers and breeders, which have positioned maize as a top global staple crop.


Assuntos
Domesticação , Zea mays , Aclimatação , Adaptação Fisiológica , Feminino , Humanos , Poaceae , Seleção Genética , Zea mays/genética
6.
Curr Opin Plant Biol ; 63: 102038, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33940553

RESUMO

Leaves are a significant component of the shoot system in grasses, functioning in light capture and photosynthesis. Leaf width, length, and angle are expressions of development that collectively define canopy architecture. Thus, the distinctive morphology of grass leaves is an interdependent readout of developmental patterning and growth along the proximal-distal, medial-lateral, and adaxial-abaxial axes. Here, we review the chronology of patterning and growth, namely along the proximal-distal axis, during maize leaf development. We underscore that patterning and growth occur simultaneously, making use of shared developmental gradients and molecular pathways.


Assuntos
Proteínas de Plantas , Zea mays , Regulação da Expressão Gênica de Plantas , Fotossíntese , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/genética , Zea mays/metabolismo
8.
Plant Direct ; 5(12): e373, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34988355

RESUMO

In C4 plants, the enzymatic machinery underpinning photosynthesis can vary, with, for example, three distinct C4 acid decarboxylases being used to release CO2 in the vicinity of RuBisCO. For decades, these decarboxylases have been used to classify C4 species into three biochemical sub-types. However, more recently, the notion that C4 species mix and match C4 acid decarboxylases has increased in popularity, and as a consequence, the validity of specific biochemical sub-types has been questioned. Using five species from the grass tribe Paniceae, we show that, although in some species transcripts and enzymes involved in multiple C4 acid decarboxylases accumulate, in others, transcript abundance and enzyme activity is almost entirely from one decarboxylase. In addition, the development of a bundle sheath isolation procedure for a close C3 species in the Paniceae enables the preliminary exploration of C4 sub-type evolution.

9.
Mol Breed ; 41(3): 19, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37309417

RESUMO

More than 1.1 billion tonnes of maize grain were harvested across 197 million hectares in 2019 (FAOSTAT 2020). The vast global productivity of maize is largely driven by denser planting practices, higher yield potential per area of land, and increased yield potential per plant. Shoot architecture, the three-dimensional structural arrangement of the above-ground plant body, is critical to maize grain yield and biomass. Structure of the shoot is integral to all aspects of modern agronomic practices. Here, the developmental genetics of the maize vegetative shoot is reviewed. Plant architecture is ultimately determined by meristem activity, developmental patterning, and growth. The following topics are discussed: shoot apical meristem, leaf architecture, axillary meristem and shoot branching, and intercalary meristem and stem activity. Where possible, classical and current studies in maize developmental genetics, as well as recent advances leveraged by "-omics" analyses, are highlighted within these sections. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01208-1.

10.
New Phytol ; 229(1): 388-402, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32738820

RESUMO

All aerial epidermal cells in land plants are covered by the cuticle, an extracellular hydrophobic layer that provides protection against abiotic and biotic stresses and prevents organ fusion during development. Genetic and morphological analysis of the classic maize adherent1 (ad1) mutant was combined with genome-wide binding analysis of the maize MYB transcription factor FUSED LEAVES1 (FDL1), coupled with transcriptional profiling of fdl1 mutants. We show that AD1 encodes an epidermally-expressed 3-KETOACYL-CoA SYNTHASE (KCS) belonging to a functionally uncharacterized clade of KCS enzymes involved in cuticular wax biosynthesis. Wax analysis in ad1 mutants indicates that AD1 functions in the formation of very-long-chain wax components. We demonstrate that FDL1 directly binds to CCAACC core motifs present in AD1 regulatory regions to activate its expression. Over 2000 additional target genes of FDL1, including many involved in cuticle formation, drought response and cell wall organization, were also identified. Our results identify a regulatory module of cuticle biosynthesis in maize that is conserved across monocots and eudicots, and highlight previously undescribed factors in lipid metabolism, transport and signaling that coordinate organ development and cuticle formation.


Assuntos
Regulação da Expressão Gênica de Plantas , Zea mays , Epiderme Vegetal/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ceras , Zea mays/genética , Zea mays/metabolismo
11.
New Phytol ; 230(1): 218-227, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33280125

RESUMO

The formation of developmental boundaries is a common feature of multicellular plants and animals, and impacts the initiation, structure and function of all organs. Maize leaves comprise a proximal sheath that encloses the stem, and a distal photosynthetic blade that projects away from the plant axis. An epidermally derived ligule and a joint-like auricle develop at the blade/sheath boundary of maize leaves. Mutations disturbing the ligule/auricle region disrupt leaf patterning and impact plant architecture, yet it is unclear how this developmental boundary is established. Targeted microdissection followed by transcriptomic analyses of young leaf primordia were utilized to construct a co-expression network associated with development of the blade/sheath boundary. Evidence is presented for proximodistal gradients of gene expression that establish a prepatterned transcriptomic boundary in young leaf primordia, before the morphological initiation of the blade/sheath boundary in older leaves. This work presents a conceptual model for spatiotemporal patterning of proximodistal leaf domains, and provides a rich resource of candidate gene interactions for future investigations of the mechanisms of blade/sheath boundary formation in maize.


Assuntos
Transcriptoma , Zea mays , Biologia Computacional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma/genética , Zea mays/genética , Zea mays/metabolismo
12.
Proc Natl Acad Sci U S A ; 117(52): 33689-33699, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318187

RESUMO

Plants maintain populations of pluripotent stem cells in shoot apical meristems (SAMs), which continuously produce new aboveground organs. We used single-cell RNA sequencing (scRNA-seq) to achieve an unbiased characterization of the transcriptional landscape of the maize shoot stem-cell niche and its differentiating cellular descendants. Stem cells housed in the SAM tip are engaged in genome integrity maintenance and exhibit a low rate of cell division, consistent with their contributions to germline and somatic cell fates. Surprisingly, we find no evidence for a canonical stem-cell organizing center subtending these cells. In addition, trajectory inference was used to trace the gene expression changes that accompany cell differentiation, revealing that ectopic expression of KNOTTED1 (KN1) accelerates cell differentiation and promotes development of the sheathing maize leaf base. These single-cell transcriptomic analyses of the shoot apex yield insight into the processes of stem-cell function and cell-fate acquisition in the maize seedling and provide a valuable scaffold on which to better dissect the genetic control of plant shoot morphogenesis at the cellular level.


Assuntos
Diferenciação Celular , Análise de Célula Única , Células-Tronco/citologia , Zea mays/citologia , Divisão Celular , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Meristema , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcrição Gênica , Transcriptoma/genética , Zea mays/genética
15.
G3 (Bethesda) ; 10(10): 3611-3622, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32816917

RESUMO

Plant disease resistance is largely governed by complex genetic architecture. In maize, few disease resistance loci have been characterized. Near-isogenic lines are a powerful genetic tool to dissect quantitative trait loci. We analyzed an introgression library of maize (Zea mays) near-isogenic lines, termed a nested near-isogenic line library for resistance to northern leaf blight caused by the fungal pathogen Setosphaeria turcica The population was comprised of 412 BC5F4 near-isogenic lines that originated from 18 diverse donor parents and a common recurrent parent, B73. Single nucleotide polymorphisms identified through genotyping by sequencing were used to define introgressions and for association analysis. Near-isogenic lines that conferred resistance and susceptibility to northern leaf blight were comprised of introgressions that overlapped known northern leaf blight quantitative trait loci. Genome-wide association analysis and stepwise regression further resolved five quantitative trait loci regions, and implicated several candidate genes, including Liguleless1, a key determinant of leaf architecture in cereals. Two independently-derived mutant alleles of liguleless1 inoculated with S. turcica showed enhanced susceptibility to northern leaf blight. In the maize nested association mapping population, leaf angle was positively correlated with resistance to northern leaf blight in five recombinant inbred line populations, and negatively correlated with northern leaf blight in four recombinant inbred line populations. This study demonstrates the power of an introgression library combined with high density marker coverage to resolve quantitative trait loci. Furthermore, the role of liguleless1 in leaf architecture and in resistance to northern leaf blight has important applications in crop improvement.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Ascomicetos , Resistência à Doença/genética , Fenótipo , Doenças das Plantas/genética , Locos de Características Quantitativas , Zea mays/genética
20.
Development ; 146(6)2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30858227

RESUMO

Floral morphology is shaped by factors that modulate floral meristem activity and size, and the identity, number and arrangement of the lateral organs they form. We report here that the maize CRABS CLAW co-orthologs drooping leaf1 (drl1) and drl2 are required for development of ear and tassel florets. Pistillate florets of drl1 ears are sterile with unfused carpels that fail to enclose an expanded nucellus-like structure. Staminate florets of drl1 tassels have extra stamens and fertile anthers. Natural variation and transposon alleles of drl2 enhance drl1 mutant phenotypes by reducing floral meristem (FM) determinacy. The drl paralogs are co-expressed in lateral floral primordia, but not within the FM. drl expression together with the more indeterminate mutant FMs suggest that the drl genes regulate FM activity and impose meristem determinacy non-cell-autonomously from differentiating cells in lateral floral organs. We used gene regulatory network inference, genetic interaction and expression analyses to suggest that DRL1 and ZAG1 target each other and a common set of downstream genes that function during floret development, thus defining a regulatory module that fine-tunes floret patterning and FM determinacy.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Zea mays/genética , Alelos , Elementos de DNA Transponíveis , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Inflorescência/crescimento & desenvolvimento , Meristema/crescimento & desenvolvimento , Mutação , Fenótipo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...